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Abstract

Individual tree volume data obtained from 365 trees
collected from five forest regions in Uasin Gishu district
of Kenya were used to derive regression equations for
estimating total and merchantable tree volume and in
comparing the forest regions. The predictor variables were
diameter at breast height outside bark and total tree
height. The techniques used in comparing the various methods
included regression analysis, analysis of variance and
multiple comparison analysis.

The best equation for total tree volume was a nonlinear
standard volume function, while merchantable wvolume was
appropriately estimated by a ratio function. All the
equations tested for the two estimations gave closely
similar results within the range of the data. Forest region
comparisons revealed some differences between one region and
the others, but the real cause for this difference could not
be evaluated with the data available in this study.

Yield estimation variables included number of trees,
average top height, basal area and age of plantations.
Equations based on age only gave poor estimation compared to
equations derived from field measuremente of both basal area
and average top height in a nonlinear equation. The poor
relation is probably due to the excessive variation in
number of trees. However, equations basec on age are cheaper

to use since no field measurement is required.
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1. Introduction

A basic requirement for objective forest management and
planning is the ability to assess the growing stock
available at the present time and in the future. In Kenyan
forest management practices, the basic unit for planning is
the plantation, and conseqguently, an accurate estimate of
stand volume within the plantation at various ages over the
entire rotation 1is essential., Although recognized as a
valuable resource, well adapted to intensive management, the
yield of eucalypt plantations in Kenya is not adequately
documented. This thesis reports on a study of the basic
relationships necessary to estimate individual tree and

stand volumes for Eucalyptus saligna/grandis in Uasin Gishu

district in Kenya.
The two main exotic softwood species in Kenya,

Cupressus lusitanica Miller and Pinus patula Schlecht and

Cham., have had acceptable individual tree volume and stand
yield functions for over ten years due to their importance
as sawtimber species. There is an increasing need for volume
and stand yield functions for other species due to fuelwood
demand in the rural areas, where wood is the only source of
energy. In the past, individual tree volume estimation has
been based on scaling. Scaling 1is time consuming and
expensive, and therefore, stand volume estimation 1is
preferred as stipulated in the Kenya Forest department
general order number 232, This study was undertaken to
facilitate the application of this approach in eucalypt
plantations.

While an individual tree volume function exists for

eucalypts, its application 1in any particular area is



unjustified for several reasons. The data that were used to
derive the function were comprised ‘of 553 sample trees
collected over the whole country. As such, the number was
too small to represent any particular area adeguately.
Secondly, the sample trees were older and conseguently
larger than trees currently being harvested from
plantations. Experience elsewhere (Bredenkamp 1982), on the
same species, has shown that aggregation of all tree-sizes
in a single equation results in poor tree volume prediction.
Thirdly, several eucalypt species, growing in different
areas were included making the adequacy of volume prediction
for any one species wunknown. Finally, both seedling and
coppice regenerated trees were used as sample trees, with no
study carried out to determine if the aggregation of the two
types of stems was acceptable,

The purpose of this study was to derive individual tree

volume and stand yield functions for Eucalyptus

saligna/grandis in order to overcome the problems discussed

above. The data for the present study were collected in the
pulpwood working circle (Uasin Gishu district) in the
summers of 1985/86. Although this species 1is successfully
grown in most parts of Kenya, this study area, consisting of
five forest regions, was selected, since it 1is planned as
the major concentration of eucalypt plantations comprising
at least 25% of all plantations in the district.

Curve fitting procedures, both 1linear and nonlinear
least squares, were used to evaluate the various
relationships of interest. Based on felled tree data, local
and standard volume functions were fitted and compared.

Regional wvariation was evaluated using analysis of’



covariance, and merchantable wvolume relationships were
evaluated using regression procedures. Additional data were
collected to evaluate stand yield relations for plantations
between ages 2 and 10 years.

The remaining chapters of the- thesis present the
results of the major components of the study. The second
chapter describes the data used to derive the tree volume
function, merchantable volume function and evaluation of the
regional differences. The next three chapters deal with the
total tree volume functions, merchantable wvolume functions
and the regiocnal differences respectively. The last chapter

is devoted to an evaluation of stand yield functions.



I1. Tree Volume Data

A, Site Description

The data for both individual tree volume and stand
yield equations were collected in Uasin Gishu district in
Kenya. The Uasin Gishu district is in the pulpwood working
circle. The district lies between 0° 30' South and 1° O
North latitude and 33° 30' and 35° 0' East longitude. It
rises from 1200 to 2500 metres above sea level. The
altitudes of the different forest regions are shown in table
1. The total forest land under forest department management
is 61,150 hectares and is comprised of softwood and hardwood
plantations and natural forests.

Although no detailed scil studies have been carried out
in the district, Ochieng (1968) did a preliminary soil
survey which showed that the whole district is situated on
tertiary volcanic rocks. The brief soil descriptions of
individual forest regions are included in table 1. Kapsaret
and Turbo have slightly different soils from the other three
forest regions, but the soils are similar and the whole
region can be assumed to be of the same quality.

Gilead and Roseman (1958) suggested that the most
important elements for plant growth are temperature and
rainfall. The temperatures in the district are fairly
constant by virtue of its location near the egquator. The
district experiences one long rainy season between March and

September and one season with minimum rainfall between
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October and February {(Mathu 1983). The average rainfall for
each forest region in this study is shown in table 1.

In all forest regions except Turbo, stands were
established on cleared natural forest sites which were
initially put under agricultural use. Cultivation (taungya
system) was allowed until canopy closure, usually at the
third year after planting. The seedlings were planted 2.5
metres apart in rows spaced at 2.75 metre intervals. In
Turbo, the fields, which were mostly grasslands, were
ploughed prior to planting. The seedlings were weeded for
the first two years to eliminate grass competition. The
stands receive no further silvicultural tending during the

entire rotation.

B. Collection of Tree Volume Data

In each forest region, approximately 10 trees were
sampled from each age between 3 and 10 years. The sample
trees had to be visually straight, with no multiple leaders
and no signs of suppression. The age range and number of
trees sampled from each forest are listed in table 1. 1In
total, 365 trees were sampled covering the full range of
diameters. Their distribution in height-diameter classes 1is
shown in table 2. Overbark diameters for the sampled trees
were measured with a diameter tape at stump height (15 cm),
1 metre and at breast height (1.3 m) from ground level
before felling. The breast height point was marked on two

opposite sides.
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The sample trees were felled, after taking the
preceding measurements, and overbark diameters were taken at
2.0 metres and at one metre intervals above this point to
the top of the tree. Overbark diameters were measured to the
nearest 0.1 cm, up to a point where diameter was less than
or equal to 5 cm. Where the mark fell on a knot, it was
moved upwards to the nearest point free of the knot effect.
The total tree height was measured to the nearest 0.05 metre
from ground level. The sample trees had an average height of
19.08 metres and an average diameter at breast height of

18.45 cm.

C. Calculation of Individual Tree Volume

Total tree volume can be calculated wusing any of
several formulas (Husch et al. 1982). However, Smalian's
formula, though not the most accurate for long sections, is
commonly used since the necessary measurements are easier to
obtain., When Smalian's formula is used on a frustum other
than that of a paraboloid or cone, it results in biased
estimates (Husch et al., 1982, Philip 1983). Husch et al.
(1982) cited a study which concluded that when log lengths
are 4 feet (1.2 m) or less, Smalian's formula yields
accurate estimates. Philip (1983) stated that errors due to
application of this formula are proporticnal to the length
of the log and the square of the difference between the
diameters at the two ends. In other words, the longer the

log and the greater the taper, the greater the error.



The eucalypts 1in this study have been described as
'shaft-like' (Penfold and Willis 1961), implying that they
are not buttressed. Further the trees are young and have
little taper. These factors together with short section
lengths justify using Smalian's formula for all sections of
the tree.

a) Total tree volume

Total tree volume 1s here defired as the volume
overbark from the stump (15 cm) to the top of the tree. The
volumes of the individual sections were computed using
Smalian's formula and summed to obtain total tree volume,

b) Merchantable Volume

Merchantable tree volume was defined as the overbark
volume from the stump height to a 5 ¢m top diameter. This
volume was obtained by subtracting the unmerchantable
portion of the stem from the total tree volume. As only a
few trees had a 5.0 cm diameter on the last diameter
measurement, linear extrapolation was used to determine the
height to the 5.0 cm top diameter as illustrated in figure
1.

The data described above are used in the next three
chapters to derive total tree volume functions, to evaluate
merchantable volume estimation and to compare the forest

regions from which the data were collected.
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12 m 4.2 cm

5.0 cm

11l m 6.3 cm

Figure 1: An illustration of determination of height to 5.0

cm top overbark diameter.

_ 1.3 _
h = > X 1= 0.62

So height to 5.0 cm top diameter is 11.62 m.



111, Estimation of Total Tree Volume

A. Introduction

Individual tree and stand volume equations are
essential guantitative tools in forest management
{(Aguirre-Bravo and Smith 1985). These equations are critical
elements in inventory systems and growth and yield
estimation procedures (Clutter et al. 1983).

Since it is not practical to carry out direct
measurements of individual tree volumes in daily forest
mensuration work, indirect methods of estimating volume are
needed. Of the various methods available, the volume table
method is perhaps the most important, both by reason of the
length of time that volume tables have been used and their
almost universal application (Spurr 1952). The objective of
a single tree volume table is to predict accurately the
total volume of a tree, without felling 1it, using
measurements that can be obtained accurately, easily and
cheaply (Philip 1983). Many independent variables have been
incorporated into regression eguations for predicting tree
volume, although measurements of stem diameter and height
tend to account for the greatest proportion of the
variability in volume (Avery 1975).

Tree volume is usually considered to be a function of
tree diameter at breast height (DBH), height (ht), and
sometimes an expression of tree form (Avery 1975, Husch et
al. 1982, Clutter et al. 1983). However, tree form is a
difficult variable to describe and there 1is often a high
degree of wvariability in form, both within and between

species {(Honer 1965, Avery 1975). Clutter et al. (1983) gave

11
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four reascons that make form undesirable in volume estimation

equations. These are:

1. Measurement of upper stem diameter 1is time
consuming, expensive and subject to large
errors.

2. Variation in tree form has a much smaller impact
on tree volume as compared to diameter and
height.

3. With some species, form is relatively constant
regardless of tree size,

4, In other species, form is often correlated with
tree size, so that DBH and height variables
often explain much of the variation caused by
the form difference.

Generally, three types of volume functions have been
used to predict individual tree volume. In simplified form,

these are

-  Volume = f{dbh)
-  Volume = f{dbh, ht)
- Volume = f£(dbh, ht, form).

The first type of relation is referred to as a local volume
function and requires only DBH as the independent variable.
The term local is used because the resulting functions are
restricted to the locale for which the height-diameter
relationship is relevant (Husch et al. 1982). The second
relation, referred to as the standard volume function, has
DBH and height as the independent variables (Avery 1975,
Husch et al. 1982, Clutter et al. 1983). Standard volume
functions, in one form or the other, are the most common and

widely wused type of volume functions. Finally, form class
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volume functions require three independent variables: DBH,
height and form. These functions may be more accurate and
applicable to larger areas than the other two (Behre 1927),
However, owing to the limitations cited earlier, these
tables are less common and are not given further
consideration in this study.

To derive the most appropriate volume eguation from the
two types of volume functions for eucalypts, two comparisons

were made:

Comparison 1: Compare the alternative equations
among local and standard volume functions.

Comparison 2: Compare the Schumacher logarithmic

form, equation (10 below), with the currently
used model.

The first comparison was carried out to arrive at an
appropriate equation for volume prediction for eucalypts in
the study region, depending on the measurements available.
For other eucalypt species, equations based on either DBH
only or DBH and height and their interactions as independent
variables have been used (Jacobs 1981). No comparison of
alternative models have been reported previously for this
species.

For Eucalyptus saligna/grandis, the logarithmic

transformed eguation (Schumacher and Hall 1933), has been
fitted both in Kenya (Wanene 1986) and in South Africa
(Schonau 1971, Bredenkamp 1982). In Bredenkamp's (1982)
study, subdivision of the trees 1into various diameter

classes was found to improve the accuracy of prediction. The
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trees were divided into below 20 e¢m, 20 to 40 cm, and above
40 cm diameter classes. Since the tree sizes in the study
reported here ranged from 15 to 30 centimeters DBH, grouping
them into one group was appropriate.

The second comparison tries to assess how reasonable it
is to use the existing volume equation within present forest
management practices. The planting of eucalypts in the study
area is being intensified to cover at least 25% of all
plantation areas. In development of the previous volume
equation, out of 553 trees, only 32 were sampled from this
region. Of these 32 trees, 24 were coppice. Further, the two
plantations from which the 32 trees were sampled were 13 and
24 years old. The use of this equation in stands that are to

be harvested by age 10 needs to be verified.

B, Methods

To assess the local and standard volume functions, 10
commonly applied eguations were fitted on 315 trees to test
the equations for suitability. The local volume functions

tested were:

Vol = by + b,dbh? ===mm=—=— s oo (1)
(Kopenzky-Gehrhardt cf. Higuchi and Ramm 1985).
Vol = b, + b,dbh + b,dbh? —=--=—-=m==mm——m—— e (2)
(Cunia 1964).
Log{vol) = b, + b,log{dbh) ——-==--===-—-———-=---—-=- (3)
(Bruce and Schumacher 1950).

where:



15

Vol = total tree volume (m?)
dbh = diameter at breast height (cm)
log = logarithm to base 10 and

b's = regression coefficients.
The standard volume functions fitted, which were
linear, 1linear transformed and nonlinear functions are

listed below:

Vol = b, + b,dbh?ht —-——--—-m—mmmmmmmmm—m e (4)

{Combined variable, Spurr 1952)

Log(vol) = b, + b,log(dbh*ht) --=-=-=-=———-————————- (5)
(Logarithmic combined variable, Spurr 1952)

Vol = bodbh ©% ht P2 oo (6)
(Schumacher and Hall 1933)

Wtvol = bodbh Pt ht P e (7)

(Furnival 1961)

Vol = b,dbh?ht ~--v-vm-crerm e (8)
(Constant form factor, Spurr 1952)

Vol = b,(dbh?ht) Pt oo (9)
(Spurr 1952)

Log(vol) = b, + b,log(dbh) + b,log(ht) --~--~=---- {(10)
(Schumacher and Hall 1933)

where:
Wtvol = volume divided by (diameter squared

times height)

ht = total height (m)

Equation (7) is equivalent to (6) weighted by diameter

squared multiplied by height and equation (2) is a quadratic
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expression (Cunia 1964). Equations (3), (5) and (10) are
logarithmic transformations, initially developed so a linear
regression procedure could be used (Spurr 1952)., Equation
{4) uses diameter squared times height as the .independent
variable and 1is similar to -equation (B) except that the
latter is forced through the origin., Equaticns (6), (7) and
(9) are nonlinear but have equations (10) and (5) as their
linear form excluding equation (7). The currently used
equation is similar to eguation {(10), but its coefficients
were obtained using data with the drawbacks mentioned
earlier.

According to (Philip 1983), before models can be
included for further analysis, they must comply with the
basic conditions:

- the variance ratio (F) must be significant at
the chosen level of probability,
- a plot of residual must exhibit,
a. no bias;
b. constant variance.
Linear eguations were fitted to the data using the Minitab
statistical package (Ryan et al, 1976), and the nonlinear
equations using the BMDP package (Dixon 1979),

Honer (1965) wused two factors for evaluating volume
functions. These were simplicity and accuracy. He defined
simplicity as: the relationship between dependent and
independent variables should be linear ard the assumptions

concerning homogeneity of wvariance should be satisfied.
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Accuracy was defined as predicted volume errors being
consistent and relatively independent of tree size. With the
use of the computer, the requirement of linearity is not a
necessity. Grey (1983} indicates that the main aim of model
building is to achieve (i) a high coefficient of
determination, (ii) a low standard errcr of estimate, and
(iii) to match predicted to measured values as closely as
possible with the smallest number of easily measured,
readily comphrensible, independent variables. The statistics
necessary to evaluate the functions should therefore be the
sum of sguared residuals and their distribution with respect
to predicted values, and the performance of the equations
when applied to independent data.

To carry out the first comparison, the coefficient of
determination (R?), the plot of residuals and the standard
errors of equations with the same form of dependent
variables were compared (Burley et al. 1972, Johnstone
1976). For eguations with transformed dependent variables,
values of R? and standard errors could not be compared with
those of untransformed functions. The standard errors of the
logarithmic and weighted equations were therefore calculated
directly from observed and predicted values of the dependent

variable as shown below:

SUM( (Y - Y')’))

Se = SQRT( ——

where:

Se standard error

SORT = sguare root
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Y and Y' = observed and predicted values of
dependent variable

number of observations

1]

n

m number of regression coefficients in the model.
Similarily, an estimated coefficient of determination (R?)

was obtained directly from

SST - SSR') x 100

R* = (Zg&7

where:
SST = sum of squares of untransformed Y
SSR' = SUM(Y - Y')? (Johnstone 1976).

To assess the second comparison, a subsample of 50
trees was selected randomly from the original 365 trees
sampled. Using coefficients of equation (10) and those of
the currently used function, two sets of volume estimates
for the 50 trees were obtained and compared using a paired
t-test (Freese 1967). The test was performed between the
estimated volumes and the actual volumes and between the two

estimated volumes.

C. Results and Discussion
Local Volume Functions
The regression results for the three eqguations (1), (2)
and (3) are listed in table 3. The standard errors expressed
as percentage of average tree volume ranged between 28.0%
for equation (2) and 28.5% for eqguation (1). The
coefficients in every egquation are significant, The R?

values in all cases are greater than 85 percent. Plots of
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residuals versus predicted volume from equation (1) and (2)
indicated variance of volume increased with increasing tree
sizes. The logarithmic transformed equation (3), yielded a
more constant variance with no obvious systematic trend.

Eguation (3) showed a standard error and R? nearly the
same as that of equation (2), but its residual plot showed a
better distribution and at zero diameter, unlike the other,
predicted no volume. (See appendix la for a comparison of
residual plots from equations (2) and (3)).

Equation (2) had an intercept term of 0.05503 m®, hence
the equation overestimated the volume of small trees and is
not very reliable. With equation (3) passing through the
origin, it gives a reasonable prediction for small trees.
The fact that the standard error is larger than that of
equation (2) may imply that equation (3) yields a poorer
prediction for large trees, although this was not
determined. The gquestion of which equation is most
appropriate depends on the trees being considered, but from
a practical point of view, either of these two could be
applied.

To evalaute how well equations (2) and (3) predict
volume, both equations were used to predict volume for the
trees in the independent data set. These predicted values
were compared to actual tree volumes and were evaluated
based on R? values and standard errors (table 4). The values
of these two statistics again indicated that eguation (2}

was more appropriate than equation (3), although the
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difference was relatively very small.
Standard Volume Functions

The regression results for the seven standard volume
functions, (4) to (10) are listed in table 3. Aall of the
equations performed well based on standard error and R?. The
standard errors of the seven equations expressed as
percentage of average tree volume ranged from 15.0% to
16.7%. R? values for all equations were greater than 95%.
The ranking of the equations based on both standard errors
and R? values is shown in table 3.

Comaprison of the three nonlinear equations, (6), (7)
and (9) indicated that equation (6) was the most appropriate
with the lowest standard error and highest R?* wvalue,
although the difference o¢f these two statistics between
equations (6) and (7) was quite small, Comparing the plot of
residuals and assuming the same assumptions hold as for
linear relationships, all equations, with an exception of
(7), showed increasing variance, Equation (9) also had a
larger standard error and smaller R? than the other two.

Equations (4) and (8), the linear -equations, were
ranked lower than the others and suifer from increasing
error variance with tree size. Among the two, equation (4)
was more appropriate with a lower standard error and higher
R* than equation (8). However, equation (8) was more
realistic in that it has no intercept.

The two logarithmic linear eguations were such that

equation (10) had both lower standard error and higher R?
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than equation (5). The difference was however very small, as
can be seen in table 3, and their plot of residuals are
similar,

The three best ranked eguations, (6}, (7) and (10), are
essentially the same model and differ mainly in that (6) is
nonlinear, (7) 1is weighted and (10) 1is a logarithmic
transformed egquation. While equation (6) was ranked as the
best, among the three equations, its plot of residuals
suffers from increasing variance (see appendix 1b). Plotting
the residuals against predicted volume when both equations
(7) and (10) were used to estimate actual volume, an
increasing variance trend similar to that of equation (6)
was observed (appendix 1c). Therefore, the statistical
benefits of weighting and logarithmic transformation to
equalize the variances do not improve prediction capability.

Analogous to the 1local volume functions, the three
equations, (6), (7) and (10) were tested on the independent
data. Based on both computed standard errors and R2?, the
same ranking for these eguations was obtained, with equation
(6) having the lowest standard error and highest R? followed
by eguation (7) and finally (10)}. Therefore, among the
individual tree volume functions, (€) is the most
appropriate for prediction purposes. Table & shows the
results of these comparisons.

If weights are not applied and the assumption is made
that variances are eqgual, when in fact they are not, the

regression technique will place more emphasize on large
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residuals and result in a good fit for those trees
associated with the large variances and vice versa for small
trees (Honer 1965). This is, however, consistent with the
useage of tree volume functions, which are typically for
larger trees associated with large variances.

Assuming the data used in this study are
representative, then the conclusions drawn by Furnival
(1961) and Cunia (1964) that increasing variance causes
inefficient estimation of parameters apparently does not
apply to the prediction capabilities of equation (6).
Therefore, the weighting or the logarithmic transformation
of equation (6) could be justified from statistical but not
from a prediction point of view.

Tc carry out the second comparison, the values of
coefficients for egquation (10) and the currently used
equation in Kenya listed below were compared, The

coefficients are:

equation {(10) existing eguation
b, -4.,34442 ~4,3687
b, 1.75657 1.8139
b, 1.12342 1,1111

The differences between these coefficients are numerically
small and when expressed as percentages are 0.56%, 3.26% and
1.11% respectively. However, when the two equations were
used to estimate volume of an independent data set, a paired
t-test revealed that the two were significantly different
with a computed t-value of 12.959 compared to a tabular

t-value of 2.009 at a 95% confidence level, A t-test between
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actual volumes and the estimated volumes from the existing
equation showed a significant difference with a t-value of
3.41., The t-test between actual volume and equation (10)
estimates was insignificant with a t-value of 0.013.

The equation developed in this study estimated a
smaller volume than the currently used equation in all
cases, The smaller volume, expressed as a percentage of the
other, ranged between 91.0% and 96.0% with an average of
93%. The deviations from the actual volume were larger for
the currently used equation than equation (10). Listed below
is the total volume of 50 trees and estimates of the total

from the two equations with their respective deviations.

Total Volume (m?) Deviation (%)

Previous Equation 13.344 +7.3
Actual Volume 12,244
Equation (10) 12.114 1.1

D. Conclusion

Overall, standard volume functions are more accurate
than local volume functions. Of the standard wvolume
functions examined, the weighted nonlinear equation (7) or
the logarithmic eqguation (10) were the best choice for
volume prediction from a statistical point of view, If
predictive power 1is of primary importance and increasing
variance with tree size is ignored, the best choice among
the functions fitted 1is equation (6) with the smallest

standard error. It should, however, Le noted that the
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differences among either local or standard volume functions
considered separately is very small for all practical
purposes.,

The equations derived in this study are more accurate
than the currently used tree volume equation. In the study
region where plantations are currently being harvested at
age 10, the derived equation should therefore be adopted if
accurate estimates are to be obtained. Based on Bredenkamp's
(1982) and Honer's (1965) studies, two points are
noteworthy. The eguations developed in this study are based
on a well defined population and their wutilization outside
of this population should be verified. Also if applied to
trees with DBH's greater than 30 c¢m, the eguations may

introduce some bias and thus should be applied cautiously.



IV, Estimation of Merchantable Volume

A. Introduction
Merchantable volume is the portion of the main tree
stem  volume within specified wutilization limits. The
relationship between merchantable volume and diameter and
height differs from that of total vclume and these same
variables., Therefore, the equations derived in the preceding
chapter cannot be applied without correction to the problem
of merchantable volume estimation.
Four general methods have been wused to estimate
merchantable volume (Cao et al. 1980, Philips 1983):
1. Direct measurement, ie. scaling of felled trees.
2. Integration of taper functiorns.
3. Regression of merchantable volume with DBH and
height.
4. Adjustment of total volume wusing a ratio of
merchantable to total volume. The ratio |is
estimated as a function of DBH and height, such

as:

_ merchantable volume

MR = f(dbh, ht) total volume

The first method is usually too costly to apply routinely
but is wused to provide data required in the last two
methods. The taper function method was not <considered 1in

this study even though it allows for any definition of

27
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merchantability. In Kenya, the limit of merchantability is
fixed and unlikely to change,

This study deals, therefore, with application of the
last two methods using several models for each and comparing
the performance of the best modeis between the two methods.
While the third method has been applied for other eucalypt
species (Jacobs 1981), only the fourth method has been used

for Eucalyptus grandis/saligna in Kenya (Wanene 1986).

Unfortunately, the ratio that was derived may currently be
of limited wutility as it was based on data whose age range
was above the normal current harvesting age.
To carry out the evaluation between the third and
fourth method, the following comparisons were done:
Comparison 1: Compare the difference in accuracy of
estimated merchantable volume among the
merchantable ratio and merchantable volume

equations.

Comparison 2: Compare the merchantable ratio and

merchantable volume eqguations.

B. Methods

Based on past studies of eucalypts and, also, the
literature concerned with volume estimation of a given
portion of stems, several merchantable ratio functions were

fitted to the sample data. These functions were:

MR = b, + b,e ? " ——-———mmmmm e (1)
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{similar to the currently used ratio, Wanene 1986).

MR = (1 = b,@bhP?) ~=smmmmommcommom (2)
(Clutter et al., 1983)

MR =1 - - (3)
(Ratkowsky 1983)

MR = e e R (4)

 + b, obsdbh
(Logistic, Ratkowsky 1983)

MR = 1 + b,e

(restriction of (1) to b, = 1 and b, < 0 b, < 0)

where:
MR = merchantable ratio
dbh = diameter at breast height {(cm)
b's = regression coefficients
e = base of natural logarithm.

Equations (1) and (5) are similar except that equation
(1) has more flexibility than eqguation (5). The two are
similar to an equation developed earlier for eucalypts in
Kenya (Wanene 1986). In equation (1)}, b, should be close to
1 while b, and b, must be less than 0 if a ratio less than 1
is to be predicted. In equation (5), b, is equal to 1, and
both b, and b, should be less than 0 to estimate a ratio

less than 1.
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Equation (2) is a rearrangement of an equation given by
Clutter et al. (1983, page 9, equation [1.12]))., Equation (3)
and (4) are growth equations that have been applied in
growth studies elsewhere (Ratkowsky 1983). While b, 1in
equation (3) must be less than 0, in equation (4) b, must be
greater than 0 and b, less than 0, if ratios between 0 and 1
are to be estimated. The testing of these two equations in
this study was initiated because the merchantable ratio
versus dbh plot was asymptotically approaching 1. Although
the above restrictions are theoretical, no restrictions were
applied when fitting the eqguations to the data, and
therefore their values were empirically determined.

To estimate merchantable volume directly, use of
merchantable rather than total height logically increases
the precision of the estimates (Spurr 1952). However, there
is usually more error associated with the determination of
the merchantable height than total height on standing trees.
Consequently, only total tree height was considered in this
study. ‘

The following merchantable volume equations were fitted
to the data, mainly because of their better fit in total

volume estimation:

Log(vol) = b, + b,log{(dbh) + b,log(ht) --—-——------—- (6)
Vol = bedbhP htP? —omm o (7)
where:

Vol = merchantable volume
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ht

total tree height

il

log(vol) logarithm to base ten of volume.

To carry out the first comparison, equations (1) to
(5), and equations (6) and (7) were compared using standard
errors, R? and analysis of residuals., In assessing the
second comparison, the best egquation from each of the two
methods were compared. The regression ccefficients of the
two equations were used to predict merchantable volume of 50

randomly selected independent trees and their estimates

compared using a paried t test (Freese 1867).

C. Results and Discussion

The ratio equations had very small cdifferences in their
merchantable ratio prediction. The actual merchantable to
total wvolume ratios ranged from 0,905966 to 0.998756.
Equation (1) had predicted ratios ranging between 0.919525
and 0.997521. Equation (2) had ratio values ranging from
0.920371 to 0.997878. Equation (3} ratios varied from
0.892485 to 0.999929 and those of eqguation (4) from 0.925988
to 0.999601, Finally equation (5) ratios ranged from
0.939349 to 0.999750 which 1is <close to the range for
equations (2) and (4). The regression results and parameter
estimates of the five equations are given in table 5,

Among the five ratio equations, (1), (2), (4) and (5}
are only slightly different. However, equation {1) is more
precise than the rest as determined by the computed R? and

standard error. Equation (3), is less precise but has the
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least number of regression coefficients to work with. This
may be the cause of the reduced precision,

The plot of residuals for both eguations (4) and (5)
are similar for all practical purposes. However, in the two
equations, when both predicted and actual merchantable ratio
were plotted against diameter at breast height, there was
overestimation of ratios for trees with DBH greater than 24
cm. The plot of equation (3) showed a slight underestimation
of the ratio for small trees and overestimation for larger
trees similar to equations (4) and (5). The plots of
equations (1) and (2) were similar and also acceptable, with
no trend in overestimating or underestimating of the ratio,
however, within the range of tree sizes 1in the data.
Therefore, to choose from equations (1) and (2), both R* and
standard error had to be relied on, which led to the choice
of equation (1) (table 5).

The merchantable volume equations used dependent
variables with different scales and so could not be directly
compared. Equation (7) suffers from an increasing variance
trend, but has a higher R®? and lower standard error than
equation (6) (table 5). When wusing the results of these
equations to predict merchantable volume of a set of
independent data, equation (7) yields a lower sum of squares
of residuals, which implies that it is more appropriate than
equation {6). The fact that the two equations are the same,
differing only 1in that one 1is nonlinear and the other

logarithmic transformed, can be seen in the small
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differences between their R? and standard error values
(table 5).

Predicted merchantable volume using equations (1) and
(7) were computed for a set of independent data and R? and
standard errors were calculated using the formulas given by
Johnstone (1976). A paired t-test was also carried out
between each of the two sets of estimated merchantable
volumes and the actual merchantabkle volume of the
independent data. The results from these comparisons are:

St. error R? t-value

Equation (1) 0.042875 95.09% 0.28 (ns)
Equation (7) 0.039028 65,93% 0.04 (ns)

Equation (1) is based on the estimates o¢f both the ratio
eqguation and total volume estimates from equation (6) of
chapter 3.

From the above results, the difference between the
estimates from the two eqguations are not significantly
different from the actual merchantable volumes, although the
merchantable volume eqguation is just slightly better than
the ratio equation. This finding 1is not unexpected. The
ratio equation is based on two approximations, whereby, the
errors associated with the estimation of total tree volume
are incorporated in the merchantable volume estimation using
the ratio function. In contrast, the merchantable volume
equation utilizes the actual values which have no previous

estimation errors invoclved.
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If the ratio function is utilized, it is appropriate
since the merchantable volume is solely reliant on the total
volume and therefore, will always be smaller than the total
volume, This condition does not exist with the merchantable
volume equations. Finally, the merchantable volume ratio
method is currently used in Kenya for other species angd,
therefore, is more compatible with present volume estimation

methods.

D. Conclusion

Although the accuracy 1in estimation of merchantable
volume using a merchantable volume function should be higher
with use of merchantable height (Spurr 1952), in the field
its measurement is difficult (Husch et al. 1982) and usually
not practical. Presently, the trend is towards constructing
volume tables that predict total volume and deriving from
these tables wvolume to specified top diameters (Philip
1983). This may suggest selection of a ratio equation
instead of the merchantable volume equation. The comparison
of ratio and merchantable volume equations indicated no
significant differences,

Application of a merchantable ratio eguation for
merchantable volume estimation is an ongoing exercise in the
Kenyan forest department. For other commercial species
similar merchantable ratios have been in existence for the
last 10 years {(Wanene 1986). The current merchantable ratio

equation for eucalypts in Kenya was based on this same data,
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collected on mature trees of different generations, species
and from very diverse sites. The use of this function is
conseguently guestionable and should be tested.

in this study, only a single top diameter was
considered, which may appear as a drawback. However,
different wutilization standards are not anticipated for the
following reasons. In the first place, higher wutilization
standards would mean total removal of the trees which may
have detrimental effects on the sites when associated with
the fast growth rate of the species. Secondly, considering
that the growth rate is high, the top section of the tree is
composed of very young material which is of little use
except as fuelwood. Finally, it is the policy of the Kenya
forest department that tree tops with diameters less than 5
cm should not be removed for any purpose from the logging
site. Therefore, the ratio developed here is adeqguate and

should be adopted in the study region.



V. Regional Differences

A. Introduction

One shortfall of the existing tree volume equation for
eucalypts in Kenya has been the inclusion of data without
validation from a variety of sources. So far, this study has
assumed that all five forest regions from which the data
were collected are similar. Bruce and Schumacher (1950)
suggest that if the trees being estimated for volume are of
the same form 1in all the forest regions concerned, then
prediction of volume using standard volume functions should
result in minimal errors. However, they also point out that
this is rarely the case and experience elsewhere (Bredenkamp
1982) has shown that there may be significant differences
between stands and/or regions.

Therefore, before a single equation can be adapted for
the whole area, the similarity of the regions should be
tested. To achieve this, the following hypothesis was

advanced and tested:

Hypothesis: There are no significant differences
between the five forest regions once variation
due to diameter and height has been controlled.

This hypothesis could be broken down into two questions:

1. Are separate equations fitted for each forest
region the same?

2. 1If the above question is answered in the

negative, where do the regional differences

37
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occur?

B. Methods

The hypothesis that there were no differences between
the forest regions was tested on the logarithmic function
(equation (10) of chapter 3). Although the function was not
the best as shown earlier, it was selected because it
provided a better basis for statistical tests. To facilitate
comparisons, indicator variables as defined below were
introduced into the equation:

Log(vol) = b, + b,log(dbh) + b,log(ht);
to include effects due to regional differences. The expanded

form is:

Y = by*+SUM(b.Z.) + bgX,+SUM(b,  -Z.X.) + bigXy*SUM(b, , ,42,%,)
where:

Y = log(wvol)

X, = log(dbh)

X, = log(ht)

b's = regression coefficients

Z's = indicator variables such that
2, = 1 when region 1, -1 when region 5, else 0
Z, = 1 when region 2, -1 when region 5, else 0
Z, = 1 when region 3, -1 when region 5, else 0
Z, = 1 when region 4, -1 when region 5, else 0.

With the indicator variables and the model as stated, each

region has its own logarithmic function. The egquation was
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fitted to the data wusing multiple 1linear regression
procedures.

Three multiple partial F tests (Kleinbaum and Kupper
1978, Steel and Torrie 1980) were used to determine whether
a single model could be used for the pooled data from the
five regions. The null hypothesis was that nc differences
exist among the regions, while the alternative was that
differences do exist.

To carry out the first test, that the equations for the
five regions all have the same constant y-intercept, the
parameters b,, b,, b, and b, in the expanded equation were
set to 0. To test that the five regions have the same
coefficient attached to log(dbh), the coefficients b, to b,
were set to 0 and finally, to test for the coefficient
attached to the log{ht), b11 to b14 were set equal to zero
and the equation refitted with all of the other parameters.
In each case, after assuming regional parameters were equal
to zero, the equation was refitted and referred to as the
reduced form, as opposed to the original eqguation which is
referred to as the full equation. The F value was

subsequently computed as:

SSE(reduced equation) - SSE(full equation)

F = number of b's put to zero

MSE(full egquation)

This F value was compared with the critical tabular F value:

F(m, n, a)’
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where: m number of b's put to zero

n = degrees of freedom for the full eqguation
a = confidence level.
The coefficients for the different regions were

significantly different if the computed partial F value was
greater than the critical tabular F value,

I1f significant differences were fcund in the above
tests, either Scheffe's or the Bonferroni method could
subsequently be used to do pairwise comparison of the
coefficients of the different forest regions. The choice of
which test to use depends on which one provides the stricter
limitations (Neter et al. 1985). These tests use the

nctation:

2 - -
§* = (r 1)F(I—a,r—1,N-r)
- a8
B = t(1 2S,N r}
where: S = Scheffe's constant

B = Bonferroni constant

r = number of independent populations
N = total number of observations

a = confidence level

s = number of comparisons being made.

While the two tests described above are generally
conservative relative to other tests, they were preferred
because of unequal sample sizes (Kleinbaum and Kupper 1978).
To decide the test to apply, if necessary, both S and B were
calculated using the 1individual tree volume data. At a

confidence 1level of 95%, § was computed and found to be
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3.079 while B was 3.612 which thus meant Scheffe's test was
to be wused 1if required. The difference between the

coefficients is significant when:

5 > > S (Neter et al. 1985)
SQRT( S, + S )
i 3

where: = Scheffe's constant

]
bi' bj = coefficients toc be compared

Si , Sb = the coefficients variances

SQRT = sgQuare root.

A confidence level of 95% was used in all the comparisons.

C. Results and Discussion

All the multiple partial F tests carried out were
rejected implying some differences existed between each of
the three coefficients among the five forest regions. The
computed F values were 3.2097, 2.5934 and B.6865 for a
common intercept, common log(dbh} coefficient and a common
log(ht) coefficient respectively. These F values were all
greater than the critical F value 2.40. Therefore, pairwise
comparison of the forest regions was required.

Kaptagat forest (region 4) had an intercept term that
was barely significantly different from that of Penon forest
(region 5) with an S value of 3,088, All the other pairwise
comparisons of the the intercepts were not significantly

different from each other. The slope coefficient attached to
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log{dbh) term was also barely significantly different
between Sabor forest (region 3) and Penon forest with an S
value value of 3.1165. Finally the coefficient attached to
log{ht) term was found significantly different between Penon
forest and three other forests. These are Turbo forest
(region 2), Sabor and Kaptagat forests, with S values of
4.0199, 4.4121 and 5.5784 respectively. Therefore, except
for the b, coefficient, which was significantly different
between the three forest regions and one more (Penon), the
other two coefficients were barely different at the 95%
confidence level (compare 3.088 with 3.079 and 3.1165 and
3.079).

All the significant differences were between Penon and
some other forest region. With no difference between the
other regions, the pooling of their data may be acceptable,
while Penon should have a separate tree volume function.
Table 6 shows the statistical results of fitting data for
each region,

The above results were not expected mainly because the
regions are geographically c¢lose to each other. Similar
results, however, have been reported elsewhere (Geary et al.
1983) where eucalypts are being grown as exotics, Geary et
al. (1983) found that within short distances in the same
stand, slight soil differences were responsible for the
differences in growth rates which consequently may also have

had some influence on the tree forms,
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D. Conclusion

After the variation due to diameter and height
differences is accounted for, very little variance remains
and, therefore, few regional differences exist. Based on the
pairwise comparison of the forest regions, the first four
regions could have a common tree volume estimating function.
The tree volume function for Penon region should, however,
be separate.

Considering that other factors, such as seed source,
silvicultural treatments and tending of the plantations in
the first three years of establishment, on top of difference
in soils, affect tree growth and form, further studies of
these factors should be carried out to determine their
effect and consequently reduce the wunexplained, though
small, variation.

With the availability of computers to estimate tree
volumes, whether a single or several different equations for
different forest regions are used depends on the accuracy
required and the existence of such equations. Therefore, it
is possible to estimate tree volume for each region based on
an equation derived from data collected within its
boundaries and within the harvesting age range, as in table

6‘



VI. Stand Yield Prediction

A, Introduction

As yield prediction 1is required for planning at the
forest level, estimates must be avallable for all
significant species, sites and for the range of harvesting
ages likely to be encountered (Johnstone 1976, Dempster and
Goudie 1984). Future growth and yield of a given forest can
be modeled based on two basic approaches: whole stand and
individual trees (Clutter et al. 1983, Mathu 1983, Philips
1983). The approach used is largely dependent on the type of
data available. In this study, the whole stand approach was
considered mainly because there is no growth data for this
species of eucalypt in Renya.

The best way to collect growth data for an even-aged
stand would be to monitor 1its developmental process by
periodically taking measurements. An alternative to this is
to carry out stem analyses. For this study, due to
continuous growth experienced in the tropics and the lack of
remeasurement data, the only possible means for obtaining
reliable information was to survey stands at different
stages of development (Sweda and Umemura 1979). This
alternative 1is complicated by sampling variability and
difference in stand characteristics such as density and
productivity in addition to growth.

A wide variety of indirect prediction methods based on

varying stand parameters has evolved to meet the range of
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conditions encountered in the forests (Spurr 1952). Among
the stand variables applied, the most commonly used are age,
site gquality and stand density as well as interactions among
these variables in a Schumacher type yield model (Curtis
1967b, Murphy and Sternitzke 1979, Murphy and Beltz 1981,
Clutter et al. 1983, Borders and Bailey 1986). According to
Pienaar and Shiver (1986), the Schumacher model is simple
and eminently sensible as a yield function for wunthinned
stands.

The main difference between this study and others
(Curtis 1967b, Borders and Bailey 1986, Pienaar and Shiver
1986) is that temporary plot data are being used. Therefore,
projection of various variables in the future 1is not
possible. Conseqguently, yield 1in this study will be
estimated based primarily on age of the stand, but a stand
yield equation based on other measured variables will be
included to compare estimates with and without field

measurements,

B. Collection of Stand Data

In each forest region, except Turbo, five
representative, temporary, fixed area plots were sampled for
each existing age class in the region. Age classes varied
from 2 to 10 years. For the Turbo region, remeasurement data
were used and treated as single-examination data. Fifteen
plots were included in the Turbo region data and two

measurement points (at least two years apart) were used even
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when more data was available. Twenty two plots were 0.015
and 8 were 0,04 hectares in this region., From the other 4
regions, 25 plots had an area of 0.02 hectares and the rest
were 0,04 hectares. In total, from the five regions, 130
plots were sampled. The age distribution by region is shown
in table 7.

The number of stems expressed on a per hectare basis
ranged from 425 to 1400. Diameters at breast height (DBH)
were measured to the nearest 0.1 cm for all trees within the
plot and top height (height of 100 largest DBH trees per
hectare - usually 2 or 4 trees per plot), was measured to
the nearest 0.5 metres using a suunto clinometer.

The plot data, which were summarized on a per hectare
basis, included number of trees, the average top height, age
of the stand, basal area and total volume. Height was the
average of 2 or 4 largest DBH trees, depending on the plot
area. Age of the stand was accurately obtained from the
plantation records. Basal area was plot basal area divided
by plot area. Likewise, total volume was obtained by
dividing plot volume by plot area. Since only a small number
of trees were measured for height, a height-diameter
relationship for each region was initially established
(appendix 2}, and applied to all trees in that region to
estimate height, The individual tree volume function
{equation (6)) developed in chapter 3 was used to estimate

individual tree volumes.
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C. Methods
One basic equation form that has been extensively used
for yield estimation is the Schumacher-type variable density

equation of the form:

In ¥ = by + by (1) + byE(S) + byg(D) —=--==--m=mmmm- (1)
where:

Y = yield per hectare

A = stand age

£(s) = some function of site quality

g(D) = some function of stand density

In (Y) = natural log of Y

b's = regression coefficients

{Pienaar and Shiver 1986).
This equation forms the basis of this study.

Among the predictor variables, age was accurately
known, but site quality was not., Owing to the similarity of
soil types in the five regions, site quality was assumed to
be the same in all regions. Stand density can be expressed
in terms of number of trees or basal area per hectare
(Bickford et al. 1957, Curtis 1967b). With the latter
expression, additional field measurements are required since
number of trees can be determined from the initial number of
trees planted. Assuming constant planting density and little
or no mortality, number of trees would be assumed constant.
For these reasons, the initial efforts at modelling yield

concentrated on volume as it relates to stand age.
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Volume was fitted to age using two different models.

Equation (1) was fitted to the data in the form:
Ln(Y) = bo + bg("’) ________________________________ (2)

Equation (2} is based on the axiom from long term studies of
plantation yield that have shown that yield 1increases
asymptotically with age (Pienaar and Shiver 1986) and
consequently the reciprocal of age. It 1is also the
Schumacher model assuming that site and density are
constant.

The second meodel was based on the Chapman-Richards

growth model (Richards 1959):

Y = b,(1 - e

Finally, a nonlinear equation:

Y = boBA Ot B P2 (4)
where:

BA = basal area,

H = top height,

was 1introduced to compare the strength of prediction
relations with and without field measurements. Equation (2)
was fitted to the data with the minitab statistical package
(Ryan et al. 1976) while the nonlinear equations, (3) and
(4) were fitted with the BMDP package (Dixon 1979)., These
equations were fitted to 105 sample plct data. Twenty five
sample plots were withheld as a test data set. While the
test data were composed of five randomly selected plots from

each region, the age ranged from 2 to 8 years with 3, 9 and
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10 year old plantations unrepresented. Also, age 2 was
represented by only one plot.

The dependent variables in the egquations were not of
the same form and therefore both R? and standard errors from
the transformed equation were directly computed to make them
comparable with those of untransformed eguations (Burley et

al., 1972, Johnstone 1976).

D. Results and Discussion

Equations (2) and (3) provide reasonable ﬁredictions of
stand vyield with R? values of 60.6% and 65.8% respectively
(table 9). Although the plot of residuals of the two
equations indicated wide variation, the plot of eguation (2)
was more acceptable with less variation.

Considering that these are plantations of young trees,
a logical question is: why isn't the relationship stronger?
The data correlation matrix, table 8, and plots of volume,
basal area, number of trees (density) and height, all
related to age (figures 2 and 3) provide a partial answer.
The plot of volume versus age (figure 2) shows substantial
variability, particularly in the 7 and 8 year old
plantations where the range in volume is 150 to 450 and 100
to 300 cubic meters per hectare respectively. Similar trends
are evident in the plot of basal area versus age.

Height versus age (figure 3} shows much less
variability, although the range increases somewhat in older

planations, The surprising result, however, is seen in the
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plot of number of trees versus age (figure 3). In spite of
the assumption that initial density is constant, the actual
density of plantations shows remarkable variability with a
range of more than 600 trees per hectare at nearly every age
from 2 to 8 years. This is a sharp contrast with what would
theoretically be expected with an initial constant planting
density of 1450 trees per hectare. This cbservation combined
with the relatively less variability in height suggests that
density variation 1is the major cause for the mediocre
relation of volume (and basal area) with age.

As a result of these observations, the assumption of
constant density was dropped and the Schumacher eguation
{both linear and nonlinear form) was fitted to the data

including density as a predictor variable:

Ln(¥) = by + by () + byN =m—======mmmmmmooooeo o (5)

Results in table 9 show only slight, though significant,
improvement in the predictive model, since correlation of
number of trees with volume is almost zero,

Figure 3 also suggests that height may be affected by
density at ages 9 and 10 years. For age 9, the height |is
high and the density is low as compared with stands at age
10, which have high density and 1low height. A logical
guestion then is: Is height affected by density? Taking data
for age 8 which had the greatest variability, a simple

linear relation between height and density was developed to
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answer the question posed above:
Ht = b, + b,N b, = 20.358, b, = 0.003342.

The correlation was not significant between height and
density at this age and thus the relation did not answer the
above question, Although the correlation coefficient was
insignificant, its positive value and therefore the positive
slope coefficient (b,) suagest that height is increasing
with density though only marginally., This inference is
céntrary to accepted theoretical expectations and should be
investigated further.

When equations (2) and (3), and (%) and (6) were used
to predict yield for the test data, the linear forms of the
two types of equations gave better predictions, with
equation (5) giving the overall best estimate. This was,
however, not expected and was probably due to problems with
the test sample, such as, the variability in density, small
size of the sample and the poor age distribution,

Equation (4), which was based on basal area and average
top height, was far better than the other eguations.
However, unlike eguation (3) which predicts yield with age
only or (6) with both age and density, (4) cannot be
directly used without field measurements and is thus of
limited utility. Therefore, it is apparent that based on the
data used, equations (3) and (6) can be used to obtain yield

estimates depending on whether density is known or not.
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Although the plot data used in deriving these equations
originated from different forest regions, no attempt was
made to fit separate equations for each region because:

1. The data are limited - 130 sample plots.

2. The data are from temporary sample plots and so
the growth process is merely being approximated.

3. The forest regions are geographically close to
each other and assumed similar.

4. Volume tables compared in chapter 5 were nearly

similar.

E. Conclusion

Overall, the yield function based on age only (equation
3) gave predictions almost as accurate as the one based on
both age and density (equation 6). Among these two
equations, the first choice for yield estimation is equation
3. This is because, although equation (6) 1is better than
equation (3), it requires a mortality function to estimate
density at various ages and this could not be accomplished
with the available data. In addition, equation (3) requires
no field measurements once age is known and is thus easily
applied.

Given physical stand measurements; basal area and top
height, stand yield can be accurately predicted using stand
volume equations (equation 4), or more directly from the
field data itself without using equations. The essence of

using eguations is to obtain accurate estimates with minimum
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costs. Stand volume eguations (eg. equation 4), although
giving more accurate predictions (table 9}, require field
measurements and thus are not convenient in application.

Curtis (1967b) cited elimination of much time delay
inherent in permanent sample plots and reduced costs as some
of the possible advantages of applying temporary sample
plots as compared to permanent ones. With the observed
variation 1in yield estimation in this study, even with the
equation based on measurements such as basal area and top
height, the above advantages cannot be justified. Therefore
additional work on expanding the permanent sample plot
program, already wunderway, 1is desirable to obtain good
growth data and also to explain or reduce any excessive
variation 1in plantation densities and to quantify mortality
relations. It should also form a fair background for
studying the 1long term effect of coppicing the stands for
several rotations,

The current management of eucalypts plantations
involves planting 1450 seedlings per hectare {(a constant
density). Mortality after the first growing season is
reduced through replanting any spots that have dead
seedlings, However, based on the observations made (figure
3), density was highly variable even at age two which
indicated a plantation management problem which requires
further study. Extrapolation of the results beyond age 10
years 1is not recommended since the age of sample plots

ranged between 2 and 10 years.



VII. General Conclusions and Recommendations

In the previous chapters, various methods for
evaluating total volume, merchantable volume and stand yield
were assessed. Although many other equations exist for each
type of estimate, those presented here are the most common
and the ones whose data requirement were met by the
available information. Regional differences within the study
area were also evaluated.

For total tree wvolume, standard volume functions,
although demanding more field measurements, were more
accurate 1in estimating volume than local volume functions.
Among the standard volume functions tested, the nonlinear
equation was considered more appropriate than either the
nonlinear weighted equation or the logarithmic transformed
one., However, differences were negligible and for all
practical purposes any of them could be applied.

An evaluation of the accuracy of the existing volume
equation for Kenya was carried out and compared to the
equation developed in this study. The former was found to be
less accurate, when applied to the data from the study area.
The major reason for reduced accuracy stems from the data
source on which the existing equation was based. On the
other hand, the equation derived here may not be appropriate
outside the study area without verification and/or
modification. This 1is in conformity with Honer (1965) who
indicates that when volume tables are constructed from
sample trees that may have been truly representative of a
specific tree population, and even when the volume
relationship is established by minimizing the sum of squared

residuals, the tables are biased by definition when applied
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to trees outside the specific population from which the
sample was drawn.

Schonau (1971) found that bark thickness had a
significant effect on the wvariation of tree volume for

Eucalyptus grandis Hill ex. Maiden. He further noted that

the difference in volume for the wvarious bark thickness
classes could be as large as 15%. A further observation in
his study was that bark thickness varied with diameter,
environment, age, stand density and seed source. In this
study, only overbark measurements were considered. The
effects of bark thickness, if any, in the light of the
parameters shown by Schonau (1971) should be investigated.
With intensified management of eucalypt plantations,
coppice regenerated stands will be a common feature in
Kenyan forests in the near future. Although Bredenkamp

(1982), studying Eucalyptus grandis Hill ex. Maiden, found

there was no difference in form between seedling and coppice
regenerated stems, separate individual tree volume functions
should be developed for the two types of stems, and compared
to justify their separation or pooling.

Merchantable volume was best estimated by a
merchantable volume equation but the difference between the
merchantable volume and ratio equation was insignificant,
Based on the current system and convenience, the ratio
equation should be continued as it is adaptable to the
current method of volume estimation as done with other
commercial species.

The regional differences were quite unusual. One of the
regions was distinctly different from the others, although

all the regions were close to each other. Based on Geary et
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al.'s (1983) observations, that significant growth
differences were obvious within short distances in eucalypts
plantations, and also considering Schonau's observations
about bark thickness, further studies are necessary.
Detailed soil studies in these and other forest regions are
a prereguisite to a better understanding of the forests.
Also, seed origin may have some effect on the growth of the
various plantations and should, therefore, be incorporated
as a predictor variable.

In deriving yield functions, wide wvariations were
evident with all of the equations fitted. One conspicous
observation was the wide variation in number of trees for
plots at varying ages which could not be easily explained.
Basically, this was a reflection of the management practices
of eucalypts plantations. To overcome this obstacle,
permanent sample plots should be established in young
plantations, from which growth can be followed. On top of
eliminating the assumed continuous growth process based on
temporary plots, the permanent plots would facilitate the
understanding of the effect of continued coppicing of the
stumps as far as yields are concerned.

For all the equations derived in this study,
extrapolation should not go beyond the age of 10 years. This
limitation, however, may not presently be significant for
most stands, since harvest is likely to occur prior to this
age for the various possible end products.

Finally, Burley et al. (1972) point out that volume
tables are not static and should therefore be periodically
tested against measured trees. As such, during harvesting of

the trees of this species, information concerning tree
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volume estimate and other tree parameters including age and
seed source should be collected to facilitate continuous

testing of the eguations and making any necessary revisions

as deemed essential.
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Appendix 1a. Residuals plots for local volume functions
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Appendix 1b. Residual plots for the standard volume functions
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Appendix 1c. Plot of residuals for transformed equations

Plot of Residuals vs predicted actual volume Egn. (7)
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Appendix 2. Height-Diameter Relationship

A, Introduction

Height estimation in the field is a slow and expensive
procedure and, consequently, it is not desirable to measure
a large number of trees per unit area (Alder 1980). When
stand volume 1is calculated from measurements of diameters
for all trees on an area and estimates of height based on a
sample of those trees, a common procedure is to relate
height to diameter and then to obtain volume per tree by
entering a standard volume table with the measured tree
diameter and the estimated tree height given by a
height-diameter function (Curtis 1967a, Hilt and Dale 1982,
Clutter et al. 1983, Buford 1986).

Curtis (1967a) suggests that relating height to
diameter may introduce erratic and 1illogical fluctuations
into the estimates. He observed that this was mainly because
the relationships are based on small samples and usually
with measurements by different people. However, these
fluctuations could be eliminated by inclusion of age as an
independent variable. Alder (1980}, however, suggests that
data from stands of different ages and densities should
never be pooled together as the resultant function is a poor
height predictor for any individual stand.

Clutter et al. (1983) and Alder (1980) point out that a
single height-diameter relationship should not be developed

for different stands unless preliminary tests have shown the
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stands to be similar. Unfortunately, in some tropical
species, there exists no strong relationship between height
and diameter (Alder 1980). Also, no study known to the
author has dealt with height-diameter relationship for
eucalypts. |

Meyer (1936) suggests that a height-diameter function
should be moderately flexible and possess the following
characteristics:

1. The slope of the function should always be
positive, approaching zero as diameter becomes
large.

2. The function should pass through the origin.

The objective of this appendix was to compare a number of
alternative height-diameter and height-diameter-age
functions. The selected function for each forest region was
used in estimation of the individual tree volumes, to

accomplish yield prediction,

B. Methods

In each plot, DBH was measured for all trees. However,
only the heights of the dominant trees (100 trees with the
largest DBH per hectare) were measured. As such the
functions developed here are based on the dominant tree
heights and DBH's.

A wide variety of equations have been used for the
height-diameter relationship (Curtis 1967a, Alder 1980, Hilt

and Dale 1982, Clutter et al. 1983). Most of the equations
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encountered in other studies are summarised 1in Curtis
(1967a). The equations can be subdivided into two main
groups. One group is for equations without transformation of
height and the other has height transformed (logarithm or
weighted). The -equations below were fitted to the data of
the five forest regions separately using the 1least sguares

technigue and compared:

Ln(ht) = by + b,dbh | ~===~m=mmmm e (1)

{(Clutter et al. 1983)

Ht = b, + b,dbh + b,dbh? =--======mmmmmmmommo—o (2)
(Staebler 1954)

Ht = 1.3 + b,dbh + b,dbh? --—-—=~--mr-r—rr (3)
{(Trorey 1932, Ker and Smith 1955)

Ht = 1.3 + bo(1 - e 20900y (4)
(Curtis 1967a)

Ht = b, + b,dbh? + b,dbh?*® + b,dbh™ 2% —~rrmeeeo (5)
{(Curtis 1967a)

Log(ht) = b, + b,log(dbh) -==-==-r=-mrrrecer e (6)
(Curtis 1967a)

Ht = b, + b,log{dbh) —-————————= e~ (7)
(Myers 1966)

Dbh/ht = b, + b,dbh + b,dbh™ | ==m=-mmmmm oo (8)
(Curtis 1967a)

where:
Ht = total tree height,
dbh = diameter at breast height,

Log logarithm to base 10,
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Ln = Natural logarithm,
e = base of natural logarithm,
b's = regression coefficients.

Of these equations, (1) has probably been the most
freguently used in recent studies of height-diameter
relationships (Clutter et al. 1983, Burk and Burkhart 1984,
Buford 1986). In Buford's (1986) study, this eguation was
found appropriate when applied to an even aged plantation of
loblolly pine at 15 years of age. Equations (2) and (3) have
had considerable use in the Northwestern states (Curtis
1967a). Equation (4), like (3), is a realistic model which
predicts breast height when diameter at breast height 1is
zero. Equation (5) was initially fitted as a polynomial with
several variables using stepwise technigues, while (6) and
(7) have been used elsewhere (Myers 1966). Equation (8) is

of the form:

D2

H=—5—+b,D+5b,D°

(Curtis 1967a)

and thus realistic in that it passes through the origin.

The linear equations were fitted to the data using the
minitab package {(Ryan et al. 1976) but equation (3) wunlike
the others was fitted with no constant term. Equation (4}
being nonlinear, was fitted using the BMDP statistical

package (Dixon 1979).
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C. Results and Discussion

The results of fitting the eight eguations are 1listed
in table 10a to 10e, for each forest region separately.
Equation (3) was fitted with (HT - 1.3) as the dependent
variable, but with no constant term. As a result, its R?
value was not comparable to that of the others and
consequently was not computed. The same argument follows for
eqguation (4}, Therefore a comparison of these two eguations
was only possible using standard error.

Among the six equations whose R? were computed,
equation (5) was the most appropriate in all cases. However,
there is no consistency in ranking among the remaining five
equations. Considering the standard error of all eight
equations, equation (5) was ranked first for three forest
regions. In the two cases where it was ranked differently,
the difference between the best ranked and equation (5) was
very small (0.48% and 0.51%). Equation (4) on the other hand
had the highest standard error and thus was the least
appropriate in all cases.

For consistency in estimation of heights given
diameter, equation (5) was adopted for all forest regions,.
Age, as a predictor variable when introduced into eguation
(5), did not improve height prediction. Since both height
and basal area are positively and almost equally correlated
to age (table 8), this meant that the inclusion of age in

height estimation after basal area was not significant.
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Apparently, with the low values of R? and high standard
errors of the equations fitted, every time an inventory is
carried out, a height-diameter function should be fitted
based on the data collected in that particular forest stand.
Equation (7) could be easily fitted using a scientific
calculator and thus is suitable whenever quick scolutions are
required., This 1is especially so where estimates may be
required in the field. However, as pointed out by Curtis
{1967a), the equation gives negative values for small trees
and therefore is not reliable in such situations.

Equation (1) 1is asymptotic, passes through the origin
and the slope is positive everywhere. Curtis (1967a), when
discussing a similar equation, indicated that powers other
than -1 may give slightly better results in very young
stands., However, with the possibility of using permanent
plot data, an elaborate type of equation [lequation (5)]
should be fitted using the stepwise regression procedures

with deletion of nonsignificant terms.

D, Conclusion

The poor height-diameter relationship pointed out 1in
(Alder 1980) was observed in the functions fitted here. As a
result, with the adoption of eguation (5), the quantitative
values of the pooled data were not appropriate and therefore
data from each forest region were fitted separately. Unless
an alternative method of estimating height is developed,

probably using height-age relationships based on permanent
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sample plot data, the suggestion, that may be appropriate
here, is that separate height-diameter relations should be
derived at all times whenever yields of this species  are
being estimated in any specific region,

In cases requiring simple and easily computed estimates
of height, two simple and generally accurate equations have
been observed to be adeguate. These are equations (1) and
(7). Therefore, depending on the computing facilities
available and the accuracy required, any of the three
equations, (1), (5) or (7}, may be applied.

When height-diameter measurements are available from
successive remeasurements of a permanent plots, the equation
obtained by fitting one of the three equations should
provide more accurate and consistent estimates of height and
consequently volume yield. However, until the availability
of such data occurs, estimates based on single examination

data should continue being applied.



